CALCULATION OF ELECTRON ENERGY LOSSES IN VARIOUS METALS

Joe Christopher Midaett

NAVAL POSTGRADUATE SGHOOL Monterey, Califopmia

June 1972

Approved for public release; distribution unlimited.

by

$$
\begin{aligned}
& \text { Joe Christopher Midgett } \\
& \text { Ensign, United Státes Navy } \\
& \text { B.S., United States Naval Academy, } 1971 \\
& \text { Submitted in partial fulfilment of the } \\
& \text { requirements for the degree of }
\end{aligned}
$$

MASTER OF SCIENCE IN PHYSICS
from the
NAVAL POSTGRADUATE SCHOOL
June 1972

Theses
M5785
C.I

ABSTRACT

A reformulation of the Blunck and Westphal theory of electron energy loss in metals was performed for the metals beryllium, aluminum, copper, tin, gadolinium, and lead. Comparison with previous theoretical calculations shows good agreement for the most probable energy loss and for the full widths at half maximum of the electron energy loss distributions. The computer program designed for these calculations is an improvement over previous programs in both computation time and simplicity.

A semi-smpirical formula for the most probable energy loss was calculated. This formula agrees, within a few percent, with the most probable energy loss calculated according to the Blunck and Westphal theory except in the case of thick $\left(>3 \mathrm{gm} / \mathrm{cm}^{2}\right)$ absorbers of heavy elements. The full width at half maximum for the energy loss distribution is presented in graphical form as functions of target thickness and atomic number. Both the most probable energy loss and the half widths were found to be only slightly dependent upon the initial electron energy.

TABLE OF CONTENTS

I. INTRODUCTION 6
II. THEORETICAL CONSIDERATIONS 8
A. THE BLUNCK AND WESTPHAL THEORY 8
B. A SEMI-EMPIRICAL FORMULA FOR THE ENERGY LOSS 12
III. ANALYSIS OF RESULTS 14
IV. RESULTS AND CONCLUSIONS 16
APPENDIX A - TABLES 19
APPENDIX B - FIGURES 27
APPENDIX C - DERIVATION OF NUMERICAL CONSTANT IN EQUATION FOR LAMBDA 37
APPENDIX D - DERIVATION OF SCREENING CORRECTION CONSTANT "F" 39
APPENDIX E - derivation of radiation length 41
APPENDIX F - REMOVAL OF THE DIVERGENCE OF THE INTEGRAL 43
APPENDIX G - CORRELATION OF COMPUTER SYMBOLOGY AND EQUATION SYMBOLS 44
APPENDIX H - COMPUTER PROGRAM 46
BIBLIOGRAPHY 51
INITIAL DISTRIBUTION LIST 52
FORM DD 1473 53

E

-
-

a
Concer

$+$
.

$=$
 =

,

LIST OF TABLES

I. Comparison of Most Probable Energy Loss, Q_{D}, for Beryllium Energy L.oss Distribution 19
II. Comparison of Full Widths at Half Maximum for Beryllium Energy Loss Distribution 20
III. Comparison of Most Probable Energy Loss, Q_{p}, for Tin Energy Loss Distribution 21
IV. Comparison of Full Widths at Half Maximum for Tin Energy Loss Distribution 21
V. Comparison of Most Probable Energy Loss, Q_{p}, for Copper Energy Loss Distribution 22
VI. Comparison of Full Kidths at Half Maximum for Copper Eriergy Loss Distribution 23
VII. Comparison of Most Probable Energy Loss, Q_{p}, for Lead Energy Loss Distribution 24
VIII. Comparison of Full Widths at Half Maximum for Lead Energy Loss Distribution 2.5
IX. Comparison of Semi-Empirical Formula Results for Most Probable Energy Loss, Qp 26

LIST OF FIGURES

1. Most Probable Energy Loss, Q_{p}, versus Target Thickness in Lead, $E_{i}=53.85$ 27
2. Most Probable Energy Loss, Q_{p}, versus Target Thickness in Lead, $E_{i}=74.74$ 28
3. Most Probable Energy Loss, Q_{p}, versus Target Thickness in Lead, $E_{j}=91.37$ 29
4. Full Width at Half Maximum versus Target Thickness in Lead, $E_{i}=53.85$ 30
5. Full Width at Half Maximum versus Target Thickness in Lead, $E_{j}=74.74$ 31
6. Full Width at Half Maximum versus Target Thickness in Lead, $E_{i}=97.37$ 32
7. Semi-Empirical Fit of Q_{p} versus Target Thickness in Aluminum, Beryllium, and Copper 33
8. Semi-Empirical Fit of Q_{p} versus Target Thickness in 34
9. Half-Widths of Blunck and Westphal's Electron Energy Loss Distribution versus Target Thickness 35
10. Half-width of Electron Energy Loss Distribution versus Radiation Length 36

I. INTRODUCTION

The theory of energy loss of monoenergetic electrons was first treated by Landau in 1944 [1]; revised by Blunck and Leisegang in 1950 [2]; and Blunck and Westphal in 1951 [3]. The Blunck and Westphal theory assumes an incident beam of monoenergetic electrons and treats energy losses due to both radiation (bremsstrahlung) and to ionization/ excitation of atomic electrons. In the theory, energy transferred to the recoil nucleus is neglected.

Previously, experimental studies of the energy loss of high energy electrons in metals have been performed at the Naval Postgraduate School by Bumiller, Buskirk, Dyer, and Miller [4], Miller [5], Goodwin [6], Deleuil and Raynis [7], Mosbrooker and Sandquist [8], and by Barry and Oppedahl [9]. Comparison of theoretical and experimental values, for the most probable energy loss and for the full width at half maximum for the energy loss distribution, have given consistent and comparable results for thin targets. However, previous computer programs designed to numerically compute the energy loss distribution have encountered divergence problems in certain integrals, and have been unsuccessful in the treatment of data from experiments with targets of high atomic number and large thickness. K. Whoeler [10] has reformulated the expressions in the Blunck and Westphal theory so that tractable numerical calculations can be achieved. The energy loss distributions of electrons have been recalculated using this reformulation and satisfactory comparison to experiment and previous calculations has been achieved with a significant reduction in computation time.

An important parameter in all electron energy loss experiments is the value of the most probable energy loss for a given thickness of target. A semi-empirical formula has been determined which will give the correct value of the most probable energy loss to within about 3% for all absorbers except ones made of thick, heavy elements. This formula is a function of the atomic number, the atomic weight, the target thickness in $\mathrm{gm} / \mathrm{cm}^{2}$ and the density in $\mathrm{gm} / \mathrm{cm}^{2}$. The full width at half maximum of the energy loss distribution is also an important parameter to the experimenter. A graphical presentation of the half-widths of the energy loss distributions is given in order to aid the experimenter in anticipating the values of the half-width without using the time-consuming computations of the Blunck and Westphal theory.

II. THEORETICAL CONSIDERATIONS

A. THE BLUNCK AND WESTPHAL THEORY

The probability that an electron of energy E_{i} looses an amount of energy between Q and $Q+d Q$ is $W(Q) d Q$. The expression for $W(Q) d Q$ is given by Blunck and Westphal [3].

$$
\begin{equation*}
W(Q) d Q=\iint_{q=0}^{Q} W_{I}(Q-q) W_{S}(q) d q d Q \tag{1}
\end{equation*}
$$

where
$W_{I}(Q-q) d Q=$ probability of energy loss $Q-q$, due to ionization
$W_{S}(q) d q=$ probability of energy loss q, due to radiation
$W_{I}(Q-q) W_{S}(q) d q d Q=\begin{aligned} & \text { joint probability of radiation loss } q \text { and } \\ & \text { ionization loss } Q-q .\end{aligned}$

In this theory it is assumed that the energy loss Q is small compared to the incident beam of energy, E_{i}, that is, $Q \ll E_{i}$.

The probability distribution for energy loss due to ionization and excitation is [3]:

$$
\begin{equation*}
W_{I}(Q-q) d Q=\sum_{\gamma=1}^{4} \frac{c_{\gamma} \gamma_{\gamma}}{\sqrt{b^{2}+\gamma_{\gamma}^{2}}} \exp \left[\frac{-\left(\lambda-\lambda_{\gamma}\right)^{2}}{b^{2}+\gamma_{\gamma}^{2}}\right] d \lambda \tag{2}
\end{equation*}
$$

where $C_{\gamma}, \gamma_{\gamma}$ and λ_{γ} are constants evaluated by Blunck and Westphal to fit the above equation to an approximation composed of four Gaussian functions, λ is the Landau lambda, a parameter related to the energy loss Q.

The Landau lambda was defined by Blunck and Leisegang as:

$$
\begin{equation*}
\lambda=\frac{Q}{a x}-\frac{\bar{K}}{a}+\ln \left(\frac{E_{i}}{a x}\right)-c \tag{3}
\end{equation*}
$$

with $\mathrm{C}=1.116$.

In the equation for lambda,

$$
Q \text { is the total energy loss traversing a path distance, } x \text {, }
$$ "a" $=0.154 Z / \beta^{2} \rho A=$ basic cross section constant,

E_{i} is the initial electron energy, and
\bar{K} is the average energy loss per centimeter of target material.
If one uses \bar{K}, the average energy loss per length of target, as derived by Sternheimer [11] and accounts for density effects, C, the numerical constant in the Landau lambda becomes $C=0.686$, as shown by Whoeler. A derivation of this constant can be found in Appendix C.

The probability that an electron looses an amount of energy between q and $q+d q$ by radiation alone is according to the Blunck and Westphal theory [3].

$$
\begin{equation*}
W_{s}(q) d q=\frac{1}{\Gamma(z)}\left(\frac{q}{E_{i}}\right)^{z} \frac{d q}{q} \tag{4}
\end{equation*}
$$

where $z=\alpha_{R} \rho R$

$$
\begin{aligned}
& \alpha_{R}=1.4 \times 10^{-3} \frac{z^{2}}{A} F \\
& F=\frac{4}{3} \ln \left(183 z^{-1 / 3}\right)+\frac{1}{9}
\end{aligned}
$$

α_{R} is equal to the inverse radiation length times the $\ln 2$, and F is a correction constant taking into account complete screening of the nucleus by the orbit electrons. The derivation of these two constants can be found in Appendices D and E. The factor of $\ln 2$ in this expression is a consequence of the theory of radiation loss according to Heitler and Bethe [12], in which the radiation length is defined as that length where the electron has lost half of its energy to radiation.

Combination of equations 2 and 4 gives the expression for the total probability, W(Q)dQ. If the following is defined:

$$
\begin{equation*}
\phi=\frac{q}{a X} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Phi(\lambda-\phi)=\sum_{\gamma} \frac{c_{\gamma} \gamma_{\gamma}}{\sqrt{b^{2}+\gamma_{\gamma}^{2}}} \exp \left[\frac{-\left(\lambda-\lambda_{\gamma}-\phi\right)^{2}}{b^{2}+\gamma_{\gamma}^{2}}\right] \tag{6}
\end{equation*}
$$

it is possible to obtain using expressions (1) and (2) the following:

$$
\begin{align*}
W(Q) d Q & =\int_{0}^{Q} \Phi(\lambda-\phi) \frac{1}{\Gamma(z)}\left(\frac{a X}{E_{i}}\right)^{z} \phi^{z} \frac{d \phi}{\phi} d \lambda \tag{7}\\
& =\left(\frac{a X}{E_{i}}\right)^{z} \frac{1}{\Gamma(z)} \sum_{\gamma} \frac{C_{\gamma}^{\gamma_{\gamma}}}{\sqrt{b^{2}+\gamma_{\gamma}^{2}}}\left[\int_{0}^{Q} \exp \left[\frac{-\left(\lambda-\lambda_{\gamma}-\phi\right)^{2}}{b^{2}+\gamma_{\gamma}^{2}}\right] \phi^{z-1} d \phi\right] d \lambda .
\end{align*}
$$

With the transformation $\phi=\frac{\eta}{2} \sqrt{b^{2}+\gamma_{\gamma}^{2}}$, it is possible to define a new integration variable n, so that the total probability becomes:

$$
\begin{equation*}
\left[\int_{0}^{n_{m}} n^{z-1} \exp \left(\frac{\sqrt{2}\left(\lambda-\lambda_{\gamma}\right)}{b^{2}+\gamma_{\gamma}^{2}} n-\frac{n^{2}}{2}\right) d n\right] d \lambda \tag{8}
\end{equation*}
$$

The variable q in equation (1) is related to the variable, n, and Q is related to λ. For convenience, Λ_{γ} is defined as:

$$
\Lambda_{\gamma}=\frac{\lambda-\lambda_{\gamma}}{\sqrt{b^{2}+\gamma_{\gamma}^{2}}}
$$

in order to express equation (8) in an apparently simpler form,

$$
\begin{equation*}
W(Q) d Q=\left(\frac{a X}{E_{i}}\right)^{z}\left(\frac{1}{2}\right)^{z / 2} \frac{1}{\Gamma(z)} \sum_{\gamma} \frac{c_{\gamma}^{\gamma}}{{ }_{\left(b^{2}+\gamma_{\gamma}^{2}\right)}^{1-z}} \int_{0}^{n_{m}} n^{z-1} e^{\sqrt{2} \Lambda_{\gamma} \eta-\frac{n^{2}}{2}} d \eta d \lambda \cdot \tag{9}
\end{equation*}
$$

It is found that for values of z less than 1.0 , that is, for relatively thin targets, the integrand tends to infinity at the lower limit of antegration and numerical evaluation of the integral in this form is not possible. Transformation of the above equation by series expansion and integration by parts will produce a form that does not diverge and produces an integral that can be computed numerically (see Appendix F for derivation of removal of divergence). This procedure will produce the following equation:

$$
\begin{align*}
W(Q) d Q= & \left(\frac{a x}{E_{i}}\right)^{z}\left(\frac{1}{2}\right)^{z / 2} \frac{1}{\Gamma(z)} \sum_{\gamma} \frac{c_{\gamma}^{\gamma} \gamma}{\left(b^{2}+\gamma_{\gamma}^{2}\right)^{1-z}}\left[\frac{1}{z} n_{m}^{2} \exp \left(\sqrt{2 \Lambda n_{m}}-\frac{n_{m}^{2}}{2}\right)\right. \\
& -\int_{0}^{n_{m}} \frac{1}{z} n^{z} \exp \left(\sqrt{2} \Lambda_{\gamma} n-\frac{n^{2}}{2}\right) \tag{10}
\end{align*}
$$

Earlier, z was defined as $z=\alpha_{R} \rho X$. This is also equal to $\alpha_{R} T$ where T is the target thickness in $\mathrm{gm} / \mathrm{cm}^{2}$. Finally by defining $\tau=z \ln 2=$ $\alpha_{R} \top \ln 2$, the final expression used in the calculation becomes:

$$
\begin{equation*}
W(Q) d Q=\left(\frac{1}{\tilde{a} T}\right)\left(\frac{\tilde{a} T}{E_{i}}\right)^{\tau} \frac{1}{2} \frac{1}{\Gamma(\tau)} \sum_{\gamma=1}^{4} \frac{C_{\gamma} \gamma_{\gamma} e^{-\Lambda_{\gamma}^{2}}}{\sqrt{\left(b^{2}+\gamma_{\gamma}^{2}\right)}} T_{\gamma} \tag{11}
\end{equation*}
$$

where:

$$
\tilde{a}=\frac{a}{\rho}=\frac{0.154 Z}{\beta^{2} A}
$$

and,

$$
T_{\gamma}=\frac{1}{\tau}\left(\eta_{n}\right)^{\tau} \exp \left[\Psi\left(n_{m}\right)\right]-\int_{0}^{n_{m}} \frac{1}{\tau} n^{\tau}\left[\sqrt{2} \Lambda_{\gamma}-n\right] \exp [\Psi(n)] d n \cdot
$$

and,

$$
\Psi(n)=\sqrt{2} \Lambda_{\gamma} n-\frac{n^{2}}{2}
$$

The expression $\frac{W(Q) d Q}{d \lambda}$ was calculated from expression (11) using the IBM 360 computer. The code is found in Appendix G and the program is in Appendix H .

B. A SEMI-EMPIRICAL FORMULA FOR THE ENERGY LOSS

The most probable energy loss $\left(Q_{p}\right)$ can be obtained from the Blunck and Westphal theory only by the rather tedious calculations outlined above. For that reason, a semi-empirical fit has been made to the Blunck and Westphal resuits. Hanson, Goldwasser, and Mills [13, 14] give a semiempirical formula for the most probable energy loss. It has the form:

$$
Q_{p}=a t \frac{Z}{A}\left[\ln \frac{t}{\rho}+b\right]
$$

where:

$$
\begin{aligned}
& a=.154 \text { and } b=17.68, \\
& Z \text { is the atomic number, } \\
& A \text { is the atomic weight, } \\
& \rho \text { is the density of target in } \mathrm{gm} / \mathrm{cm}^{2}, \\
& t \text { is the target thickness in } \mathrm{gm} / \mathrm{cm}^{2} \text {. }
\end{aligned}
$$

The formula agrees with the Blunck and Westphal results to within about 15\%.

Presented in this paper for the formula of the most probable energy loss is the equation:

$$
Q_{p}=0.154 t \frac{Z}{A}\left[\ln \frac{t}{\rho}+20.085\right]
$$

By setting the value of a equal to 0.154 (a collection of fundamental constants) and solving for b in order to fit the formula to the Blunk and Westphal results, a better semi-empirical formula was arrived at,

=2

1
nem

which gives results that are within 3% of the Blunck and Westphal values except for thick targets of heavy elements.

III. ANALYSIS OF RESULTS

The values for the most probable energy loss and the full width at half maximum found in Tables I through VIII were taken from the calculated energy loss distributions of electrons, using Blunck and Westphal's theory. This final energy loss distribution was found using an initial distribution which was not monoenergetic but which had a finite half width. The initial distribution was then folded into the Blunck and Westphal theory using the histogram method as described by Barry and Oppedah1 [9]. In previous works however, the initial distribution was approxinated by taking its experimental half width and fitting this half width to a Gaussian function. In this thesis, the actual experimental distribution for the incident electrons was used, taken from data of previous experiments $[6,7,8, \& 9]$. In Tables I through VIII, Q_{p} (B\&:0) refers to the value of the most probable energy loss as calculated by Barry and Oppedah1; Q_{p} (MID) refers to the most probable energy loss as calculated in this paper, and Q_{p} (EXP) refers to the experimental value of the most probable energy loss.

The results for most probable energy loss, Q_{p}, and half widths, H.W., were then plotted against the target thickness for various metals. These results were compared with the theoretical results calculated by Barry and Oppedahl and with the actual experimental values. This comparison in lead can be see in Figures 1 through 6.

The most probable energy loss and half widths for the electron energy loss distribution of various metals were also calculated using monoenergetic initial electron beam. These parameters, Q_{p} and H.W.,
\square
$=-1$
1


```
#
```

 ?
 minn \qquad In linin
 \qquad
1 m

In
 nth

```
=-2
    ---4
```



```
    L+e
\(+\)
```


$=$

\tan
\qquad

-2

\qquad
-2

\qquad
\qquad
\qquad
were then plotted against target thickness and the resulting curves were then fitted to an empirical formula which will calculate the most probable energy loss and half width given the target thickness, the atomic number Z, the atomic weight A, and the density of the target material. These results are found in Figures 7 through 10.

IV. RESULTS AND CONCLUSIONS

The theoretical results for the most probable energy loss, Q_{p}, and full width at half-maximum, H.W., for the electron energy loss distributions, as calculated from the reformulation of Blunck and Westphal's energy loss theory, are listed in Tables I through VIII. A comparison of these results with Barry and Oppedahl's theoretical results yield values which are essentially the same for the range of target thickness of the metals used. Comparison with experimental values, taken from previous experiments performed at the Naval Postgraduate School, yield results which are excellent for the most probable energy loss, but which predict the correct half-widths of the distributions for only thin targets of thickness $<3 \mathrm{gm} / \mathrm{cm}^{2}$. These are the same results arrived at in previous papers on this subject. However, the predicted values for Q_{p} were, in some cases, closer to the experimental value than the theoretical values presented in previous theses. This is believed to be because the actual experimental initial distribution was used in the calculations rather than a Gaussian approximation and because density effects were properly considered by the redefinition of the Landau lambda.

The discrepancies in the half-widths for the thicker, heavier targets is to be expected based on the assumptions made in the Blunck and Westphal theory. It is assumed in this theory that the energy loss in the target is small compared to the energy of the incident beam. For thick targets ($>3 \mathrm{gm} / \mathrm{cm}^{2}$) of heavy elements, the ellergy loss in the target is greater than 10% of the incident beam energy.

The most probable energy loss and the half-width of the energy loss distribution is nearly independent of the incident energy (E_{i}) of the electron for the range of energies used. Figures 1 through 3 plot Q_{p} versus target thickness for various values of E_{i} in lead. Similarly, Figures 4 through 6 show that the half-widths are also nearly independent of incident energy for lead. In Tables I through VIII, comparisons of Q_{p} and half-width for different target thicknesses, show the energy independence in other metals.

A monoenergetic beam was used to calculate the Blunck and Westphal values for the most probable energy loss and the half-width of the energy loss distribution. These values were plotted against target thickness in order to try and fit the curves to simple empirical formulas which could be used in substitution of the tedious Blunck and Westphal computations. For the most probable energy loss, Q_{p}, a semiempirical formula given by Hanson; Goldwasser, and Mills was used which has the form:

$$
Q_{p}=a t \frac{Z}{A}\left[\ln \frac{t}{\rho}+b\right]
$$

The constants a and b were determined as follows; a was selected to be equal to 0.154 which is a collection of fundamental constants equal to:

$$
\frac{2 \pi e^{4}}{m c^{2}} N,
$$

where e is the fundamental charge of the electron, m is the mass of the electron, c is the speed of light, and N is Avogadro's number. Using this value for a, b was determined by fitting the semi-empirical formula to the beryllium data for the most probable energy loss as given by the Blunck and Westphal theory. The value of b obtained was 20.085. This

proved to be significantly different from the value of 17.68 given by Hanson et al for the value of b. This form of the semi-empirical formula agreed to within about 3% of the values for Q_{p} predicted by Blunck and Westphal. The only exceptions were for thick targets of heavy metals such as gadolinium and lead. This is a significant improvement over the values predicted from the formula by Hanson et al which gives results good to only within about 15% for Q_{p}. The semi-empirical formula for Q_{p} is plotted against target thickness and is shown in Figures 7 and 8. Also plotted on these graphs are the theoretical Blunck and Westphal values for the various metals. In addition, Table IX gives the values for Q_{p} as calculated using the Blunck and Westphal theory, the Hanson, Goldwasser, and Mills empirical formula and the empirical formula as computed in this paper. Percent differences between the semi-empirical formulas and the Blunck and Westphal values are also given.

A similar attempt was made to fit the data of half-widths to an empirical formula, but no simple formula could be found. Instead, a graphical presentation of half-widths is given in order to present the experimenter with a satisfactory estimate of the half-width. Figure 9 shows the half-widths as a function of target thickness for the metals used in this study. The strong "Z" dependence is shown as the heavier elements curve sharply upward. In Figure 10, the half-width is plotted against the fractional radiation length the electrons have for the various thicknesses of target. The graphs should enable one to estimate the half-width of the energy loss distribution if the thickness of the target is known for materials up to the atomic number of lead.

APPENDIX A - TABLES

$\begin{aligned} & \text { Table I. Comparison of Most Probable Energy Loss, } Q_{p} \text {, for } \\ & \text { Beryllium Energy Loss Distribution. }\end{aligned}$

$E_{i}(\mathrm{MeV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$Q_{p}(B \& O)$	$Q_{p}(M I D$	Q_{p} (EXP)
52.89	0.742	0.98	0.99	$0.98 \pm .02$
	1.479	2.04	2.03	$2.00 \pm .04$
	2.209	3.05	3.08	$2.96 \pm .05$
	2.961	4.17	4.15	$4.09 \pm .08$
	3.673	5.29	5.25	$5.19 \pm .05$
	4.475	6.36	6.40	$6.24 \pm .13$
	5.179	7.46	7.52	$7.40 \pm .08$
	5.908	8.69	8.65	$8.38 \pm .12$
74.78	0.738	1.02	1.00	$1.01 \pm .03$
	1.479	2.04	2.04	$2.07 \pm .04$
	2.209	3.11	3.10	$3.04 \pm .05$
	2.941	4.15	4.15	$4.15 \pm .14$
	3.673	5.29	5.15	$5.15 \pm .06$
	4.435	6.39	6.40	$6.28 \pm .10$
	5.179	7.46	7.50	$7.42 \pm .13$
	5.908	8.68	8.65	$8.51 \pm .09$
94.64	0.738	1.02	7.00	$1.05 \pm .04$
	1.479	2.04	2.05	$2.06 \pm .04$
	2.209	3.11	2.99	$3.09 \pm .04$
	2.941	4.15	4.20	$4.06 \pm .06$
	3.673	5.29	5.27	$5.19 \pm .06$
	4.435	6.39	6.40	$6.30 \pm .12$
	5.179	7.61	7.55	$7.47 \pm .12$
	5.908	8.69	8.63	$8.63 \pm .14$

Table II. Comparison of Full Widths at Half Maximum for Beryllium Energy Loss Distribution.

E_{i}	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	H.W.(B8O)	H.W.(MID)	H.W. (EXP)
52.89	0.742	0.33	0.36	$0.36 \pm .02$
	1.479	0.53	0.56	$0.56 \pm .04$
	2.209	0.67	0.76	$0.77 \pm .04$
	2.961	0.90	0.96	$1.07 \pm .07$
	3.673	1.17	1.18	$1.25 \pm .06$
	4.415	1.40	1.41	$1.46 \pm .09$
	5.799	1.76	1.70	$1.76 \pm .10$
	5.908	2.09	1.93	$2.19 \pm .14$
74.78	0.733	0.46	0.44	$0.47 \pm .04$
	1.479	0.56	0.60	$0.61 \pm .04$
	2.209	0.74	0.78	$0.79 \pm .05$
	2.941	0.96	0.96	$1.15 \pm .08$
	3.673	1.17	1.20	$1.39 \pm .06$
	4.435	1.46	1.43	$1.61 \pm .10$
	5.179	1.76	1.68	$1.83 \pm .08$
	5.908	2.12	1.96	$2.24 \pm .11$
94.64	0.738	0.58	0.54	$0.57 \pm .05$
	1.479	0.68	0.70	$0.66 \pm .04$
	2.209	0.83	0.88	$0.84 \pm .06$
	2.941	1.06	1.05	$1.22 \pm .08$
	3.673	1.23	1.28	$1.35 \pm .08$
	4.435	1.53	1.50	$1.58 \pm .12$
	5.179	1.82	1.75	$1.93 \pm .10$
	5.908	2.16	1.98	$2.29 \pm .11$

(1)

Table III. Comparison of Most Probable Energy Loss, Q_{p}, for
Tin Energy Loss Distribution.

$E_{i}(M \mathrm{MeV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$Q_{p}(B \& O)$	$Q_{p}(M I D)$	Q_{p} (EXP)
52.53	1.485	1.83	1.80	$1.78 \pm .05$
	2.970	3.84	3.85	$3.86 \pm .15$
	4.455	6.56	6.55	$6.35 \pm .30$
75.00	1.485	1.81	1.80	$1.77 \pm .07$
	2.970	3.93	3.90	$3.86 \pm .75$
	4.455	6.56	6.60	$6.65 \pm .30$
94.40	1.485	1.88	1.90	$1.87 \pm .10$
	2.970	3.93	3.98	$3.96 \pm .20$
	4.455	6.56	6.60	7.00 ± 1.0

Table IV. Comparison of Full Widths af Half Maximum for Tin Energy Loss Distribution.

$E_{i}(\mathrm{MeV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	H.W. (B\&O)	H.W. (MID)	H.W. (EXP)
52.53	1.485	0.75	0.78	$0.78 \pm .10$
	2.970	3.03	2.68	$3.02 \pm .40$
	4.455	16.70	16.00	11.30 ± 2.0
75.00	1.485	0.73	0.76	$0.83 \pm .10$
	2.970	2.56	2.72	$2.96 \pm .42$
	4.455	16.69	16.75	15.50 ± 2.0
94.40	1.485	0.83	0.95	$0.88 \pm .15$
	2.970	2.63	2.85	$2.72 \pm .45$
	4.455	16.75	16.00	16.20 ± 4.0

Table V. Comparison of Most Probable Energy Loss, Q_{p}, for
Copper Energy Loss Distribution.

$E_{i}(M \mathrm{MV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$Q_{p}(B \& 0)$	$Q_{p}(M I D)$	Q_{p} (EXP)
52.84	0.711	0.92	0.90	0.94
	1.423	1.89	1.84	1.87
	2.134	2.90	2.80	2.87
	2.845	3.87	3.83	3.80
74.76	0.711	0.92	0.90	0.92
	1.423	1.89	1.85	1.91
	2.134	2.90	2.85	2.92
	2.845	3.95	3.85	3.98
94.30	0.711	0.91	0.90	0.95
	1.423	1.94	1.90	1.94
	2.134	2.96	2.90	2.93
	2.825	3.99	3.90	4.00

Table VI. Comparison of Full Widths at Half Maximum for Copper Energy Loss Distribution.

$E_{i}(\mathrm{MeV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$H . W .(B \& 0)$	H.W.(MID)	H.W. (EXP)
52.84	0.711	0.46	0.40	0.52
	1.423	0.69	0.65	0.84
	2.134	1.04	1.00	1.16
	2.845	1.54	1.60	1.75
74.76	0.711	0.56	0.46	0.66
	1.423	0.78	0.70	1.07
	2.134	1.12	1.15	1.43
	2.845	1.61	1.58	1.98
94.30	0.711	0.67	0.62	0.74
	1.423	0.87	0.80	0.99
	2.134	1.22	1.13	1.47
	2.845	1.71	1.48	1.75

Table VII. Comparison of Most Probable Energy Loss, Q_{p}, for Lead Energy Loss Distribution.

$E_{i}(\mathrm{MeV})$	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$Q_{p}($ B\&O)	Q_{p} (MID)	Q_{p} (EXP)
53.85	0.706	0.79	0.80	$0.81 \pm .05$
	1.412	1.66	1.88	$1.45 \pm .08$
	2.118	2.55	2.60	$2.64 \pm .10$
	2.825	3.57	3.70	$3.66 \pm .12$
74.74	0.76	0.83	0.84	$0.82 \pm .05$
	1.412	1.68	1.88	$1.80 \pm .10$
	2.118	2.66	2.65	$2.59 \pm .12$
	2.825	3.66	3.70	$3.70 \pm .15$
91.37	0.706	0.90	1.00	$0.87 \pm .07$
	1.412	1.80	2.00	$1.77 \pm .10$
	2.118	2.70	2.73	$2.75 \pm .15$
	2.825	3.69	3.80	$3.84 \pm .22$

Table VIII. Comparison of Full Widths at Half Maximum for Lead Energy Loss Distribution.

$E_{\mathbf{i}}$ (MeV)	$T\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	H.W.(B\&O)	H.W.(MID)	H.W. (EXP)
53.85	0.706	0.54	0.56	$0.60 \pm .06$
	1.412	0.97	1.10	$1.23 \pm .12$
	2.118	2.11	2.21	$2.65 \pm .25$
	2.825	6.46	6.32	$6.26 \pm .50$
74.74	0.706	0.78	0.75	$0.82 \pm .05$
	1.412	1.23	1.28	$1.47 \pm .07$
	2.118	2.37	2.35	$2.24 \pm .19$
	2.825	6.52	6.43	$6.25 \pm .85$
91.37	0.706	0.93	0.85	$0.78 \pm .08$
	1.412	1.37	1.35	$1.52 \pm .19$
	2.118	2.53	2.48	$2.74 \pm .64$
	2.825	6.95	6.65	$8.80 \pm .70$

$$
\operatorname{tar}-1=
$$

Table IX. Comparison of Semi-Empirical Formula Results for Most Probable Energy Loss, Q_{p}

$t\left(\mathrm{gm} / \mathrm{cm}^{2}\right)$	$Q_{p}(B \& W)$	Q_{p} (HAN)	PERCENT DIFF.	Q_{p} (MID)	PERCENT DIFF.
$B E(Z=4)$					
1.0	1.32	1.16	12.1	1.33	0.8
2.0	2.76	2.43	12.0	2.76	0.0
3.0	4.22	3.73	11.6	4.22	0.0
4.0	5.70	5.05	11.4	5.71	0.2
5.0	7.20	6.39	11.0	7.21	0.1
A1 ($\mathrm{Z}=13$)					
1.0	1.38	1.24	10.1	1.41	2.2
2.0	2.86	2.58	9.8	2.94	2.8
3.0	4.40	3.96	10.9	4.50	2.3
4.0	6.02	5.37	10.8	6.08	1.0
$\mathrm{Cu}(\mathrm{Z}=29)$					
1.0	1.24	1.09	12.1	1.26	1.6
2.0	2.60	2.27	12.7	2.61	0.4
3.0	4.02	3.60	12.9	4.00	0.5
4.0	5.52	4.74	14.1	5.42	1.8
5.0	7.12	6.00	15.7	6.85	3.8
$\mathrm{Sn}(\mathrm{Z}=50)$					
1.0	1.16	1.02	12.1	1.17	0.9
2.0	2.44	2.13	12.7	2.44	0.0
3.0 4.0	3.84 5.58	3.27 4.43	14.8 20.6	3.74 5.06	2.6 9.3
1.0	1.12	0.98	12.5	1.13	0.9
2.0	2.40	2.04	15.0	2.35	2.1
3.0	3.84	3.14	18.2	3.60	6.2
4.0	5.86	4.26	27.3	4.87	16.9
$\mathrm{Pb}(\mathrm{Z}=82)$					
1.0	1.06	0.92	13.2	1.07	0.9
2.0	2.30	1.94	15.6	2.24	2.6
3.0	2.94	2.99	24.1	3.43	12.9
4.0	7.20	4.05	43.7	4.64	35.6

$Q_{p}(B \& W)$ - most probable energy loss as given by Blunck and Westphal.
Q_{p} (HAN) - most probable energy loss as calculated from the semiempirical formula by Hanson et al.
Q_{p} (MID) - most probable energy loss as calculated from the semiempirical formula presented in this paper.
All percentage differences are with respect to the Blunck and Westphal Theory.

•

Most Probable Energy Loss, Q_{p}, versus
Target Thickness $E_{i}=91.37$

H.W. | Full Width at Half Maximum versus |
| :---: |
| Target Thickness $E_{i}=53.85$ |

+ann

[^0]

Figure 8

$$
1
$$

4

APPENDIX C - DERIVATION OF NUMERICAL CONSTANT IN EQUATION FOR LAMBDA

Sternheimer [11] gives for the correct expression for the average energy loss of electrons:

$$
\begin{equation*}
\frac{1}{\rho} \frac{d E}{d X}=\frac{2 \pi n Z e^{4}}{m c^{2} \beta^{2} A \rho}\left[\ln \frac{m c^{2} \beta^{2} T}{\left(1-\beta^{2}\right) I^{2}}+\frac{9}{8}-\beta^{2}-\delta\right] \tag{1}
\end{equation*}
$$

where the factor in front is:

$$
\frac{2 \pi N Z e^{4}}{m c^{2} \beta^{2} A}=\frac{a}{\rho} .
$$

T is the maximum transferable energy, and for electrons impact on electrons, is equal to $\mathrm{E}_{\mathfrak{i}} / 2$.

Landau's expression for the average energy loss due to distant collisions is:

$$
\int \varepsilon \omega(\varepsilon) d \varepsilon=a \ln \frac{\varepsilon \eta}{\varepsilon^{1}} \text {, where } \ln \varepsilon^{\prime}=\frac{\ln \left(1-\beta^{2}\right) I^{2}}{2 m c^{2} \beta^{2}}+\beta^{2} \text {. }
$$

Substituting this into (1) gives the following expression for the energy loss per path length:

$$
\begin{equation*}
\frac{d E}{d X}=\bar{K}=a\left[\ln \frac{E_{i}}{4}-\ln \varepsilon^{\prime}+\frac{9}{8}-\delta\right] \tag{2}
\end{equation*}
$$

The parameter λ was defined by Landau as:

$$
\begin{aligned}
& \lambda=\frac{Q}{a X}-\ln a X+\ln \varepsilon^{\prime}-1+C_{B}+\delta . \\
& C_{B}=\text { Bournelli's constant }=0.577
\end{aligned}
$$

\qquad

By eliminating the term $\ln \varepsilon^{\prime}$ in λ by the expression for \bar{K}, equation (2) above, the expression for λ becomes:

$$
\lambda=\frac{Q}{a X}-\frac{\bar{K}}{a}+\ln \frac{E_{i}}{a X}-\ln 4+C_{B}+\frac{9}{8}-1
$$

The last four constants add to give a numerical value of 0.686 . Therefore, the expression for λ becomes:

$$
\lambda=\frac{Q}{a X}-\frac{\bar{K}}{a}+\ln \frac{E_{i}}{a X}-0.686 .
$$

Previous calculations involving energy loss of electrons has used the constant 1.176 in the equation for lambda. However, calculations in this paper used the constant 0.686 , where the density effect has been taken into account. The differences in the values of these constants can be significant for values of lambda of the order of 1.0. These values for lambda are found for values of Q near the peak of the energy loss distribution.

APPENDIX D - DERIVATION OF SCREENING CORRECTION CONSTANT "F"

In calculating the probabilities for radiation processes, it is necessary to take into account the screening of the Coulomb field by outer atomic electrons particularly when the average impact parameter of the electron is of the same order of magnitude as the atomic radius. This screening effect must be taken into account when computing the energy loss of electrons.

An electron of initial energy E_{i} will loose energy by the emission of radiation as it passes near a heavy nucleus (bremsstrahlung). The probability of this electron to emit a photon with energy between E^{\prime} and $E^{\prime}+d E^{\prime}$ after traversing a thickness of $d T\left(\mathrm{gm} / \mathrm{cm}^{2}\right)$ is given in an article by Bethe and Heitler [12] as:

$$
\Phi_{R}\left(E_{i} E^{\prime}\right) d E^{\prime} d T=4 \alpha \frac{N}{A} z^{2} r_{e}^{2} \frac{d E^{\prime}}{E^{\prime}} F\left(E_{i} u\right)
$$

where:

$$
\begin{aligned}
\alpha= & \text { fine structure constant }=1 / 137, \\
r_{e}= & \text { electron radius }=e^{2} / \mathrm{mc}^{2}, \\
F\left(E_{i} u\right)= & \text { correction constant taking into account complete } \\
& \text { screening by other atoms. }
\end{aligned}
$$

The parameter u, is defined in Rossi [15], as:

$$
u=\frac{E^{1}}{E_{i}+m c^{2}}
$$

For electrons the assumption that $m c^{2} \ll E_{j}$ can be made, which in turn will make:

$$
u=\frac{E^{\prime}}{E_{i}}
$$

佂

$+5$

Hinity
Hen

1
플

Rossi also defines the parameter:

$$
\gamma=\frac{100 m c^{2}}{E_{i}+m c^{2}} \cdot \frac{v}{1-v} z^{-1 / 3}
$$

where:

$$
\gamma=\frac{r_{\text {atom }}}{r_{\text {eff }}}
$$

$r_{\text {eff }}$ is the effective impact parameter. For $\gamma \ll 1$, the effective radius much greater than the radius of the atom, complete screening is defined. The basic assumption of the Blunck and Westphal theory is that the energy loss is small compared to the initial energy of the electron. Therefore, $E^{\prime} \ll E_{j}$ and $\gamma \ll 1$ and $u \ll 1$.

For complete screening, Bethe and Heitler give for the screening correction constant:

$$
F\left(E_{i} u\right)=\left[1+(1-u)^{2}-\frac{2}{3}(1-v)\right] \ln 183 Z+\frac{1}{9}(1-u)
$$

For $u \ll 1$ the function $F\left(E_{j} u\right)$ becomes:

$$
F=\frac{4}{3} \ln 183 z^{-1 / 3}+\frac{1}{9}
$$

$=$

 (
APPENDIX E - DERIVATION OF RADIATION LENGTH

The average radiation loss of an electron of energy E_{i} per $\mathrm{gm} / \mathrm{cm}^{2}$ material is: (See Rossi [15], Bethe-Heitler [12]):

$$
\begin{aligned}
& \frac{d q}{d T}=\int_{0}^{E_{i}} \Phi_{R}\left(E_{i} E^{\prime}\right) E^{\prime} d E^{\prime}=4 \alpha \frac{N}{A} z^{2} r_{e}^{2} F E_{i} \\
& \alpha_{R} \text { is defined as }=4 \alpha \frac{N}{A} z^{2} r_{e}^{2} F\left(\mathrm{gm} / \mathrm{cm}^{2}\right)^{-1}
\end{aligned}
$$

where F is a screening correction constant to take into account the screening of the electrons by the Coulomb field of orbit electrons. Defining α_{R} as above, the average energy loss per $\mathrm{gm} / \mathrm{cm}^{2}$ material can be written,

$$
\frac{d E}{d T}=-\alpha_{R} E
$$

Therefore,

$$
E=E_{0} e^{-\alpha_{R}^{T}}
$$

By defining the radiation length as that length where the electron has lost one half of its energy,

$$
\frac{1}{2} E_{i}=E_{i} e^{-\alpha_{R} T_{R}}
$$

and

$$
\frac{1}{T_{R}}=\frac{\alpha_{R}}{\ln 2}
$$

The above definition for radiation length differs from that of the other authors where the radiation length is that length of material in which an electron has had its energy reduced to $1 / e$ of the initial energy.

8

11

$1+$

Itat

Putting numerical values into α_{R} gives:

$$
\alpha_{R}=1.38 \times 10^{-3} \frac{z^{2}}{A} F\left(\mathrm{gm} / \mathrm{cm}^{2}\right)^{-1}
$$

APPENDIX F - REMOVAL OF THE DIVERGENCE OF THE INTEGRAL

The expression for Λ_{γ} has been defined as:

$$
\Lambda_{\gamma}=\frac{\lambda-\lambda_{\gamma}}{\sqrt{b^{2}+\gamma_{\gamma}^{2}}}
$$

Therefore, the probability of energy loss Q is:

For $z<1$ the integral diverges when calculated numerically. The actual integral is not singular, so a series expansion is taken; first order expansion gives the following:

$$
\int_{0}^{n_{m}} \frac{1}{n^{1-z}} d n=\frac{n^{2}}{z}{ }_{0}^{n_{m}}=\frac{n_{m}^{2}}{z} \text { for } z \neq 0 \text {. }
$$

Integration by parts allows the integral to obtain a form suitable for handling by standard numerical routines.

$$
\begin{align*}
& T=\int_{0}^{n_{m}} n^{z-1} e^{\sqrt{2} \Lambda} \gamma^{n}-\frac{n^{2}}{2} d=\int_{0}^{n_{m 1}} n^{z-1} e^{\Phi(n)} d n \tag{1}\\
& T=\left.\frac{n^{2}}{z} e^{\Phi(n)}\right|_{0} ^{n_{m a x}}-\int_{0}^{n_{m}} \frac{n^{z}}{z} e^{\Phi(n)} \Phi^{\prime}(n) d n \tag{2}
\end{align*}
$$

finally,

$$
T=\frac{1}{z} n_{m}^{z} \exp \left[\sqrt{2} \Lambda_{\gamma} n_{m}-\frac{n_{m}^{2}}{2}\right]-\int_{0}^{n_{m}} \frac{n^{z}}{z} e^{\Phi(n)}\left(\sqrt{2} \Lambda_{\gamma}-n\right) d n
$$

and

APPENDIX G - CORRELATION OF COMPUTER SYMBOLOGY AND EQUATION SYMBOLS

$E 0=E_{j}$	energy of incoming electrons in MeV.
$z=z$	atomic number of target material.
$A=A$	mass number of target material.
$T=T$	target thickness in $\mathrm{gm} / \mathrm{cm}^{2}$.
$B S Q=\beta^{2}$	$\left(\right.$ electron speed/c) ${ }^{2}$.
ALPHA $=\tilde{\mathrm{a}}$	basic cross section constant.
$V=F$	correction constant taking into account complete
	screening in radiation loss.
$A R=\alpha_{R}$	inverse radiation length times $\ln 2$ in $\left(\mathrm{gm} / \mathrm{cm}^{2}\right)^{-1}$.
TAU $=\tau$	target thickness in radiation length times in 2.
$Q=Q$	energy loss of electrons in MeV.
RION $=I(Z)$	Bloch formula for average ionization potential.
$x=x$	variable for evaluation of density correction.
DELTA $=\delta$	density correction according to Sternheimer.
BBARK $=\tilde{K}$	average total energy loss ($\mathrm{MeV} / \mathrm{gm} / \mathrm{cm}^{2}$).
LAMPBA $=\lambda$	Landau lambda for energy loss distribution.
$D(I)=C_{\gamma}$	
$\begin{aligned} & G(I)=\gamma_{\gamma} \\ & R(I)=\lambda_{\gamma} \end{aligned}$	constants for superposition of W(Q) from Gaussians.
QBAR $=\bar{Q}$	average energy loss in target (MeV).
$B=b$	correction constant for second order term in resonance
	part of ionization loss.
CAPPI $=\Lambda_{\gamma}$	variable in Landau function.

minn
\min
In
$+$

18
ner

FGAMMA $=\quad \frac{1}{\tau}\left(n_{m}\right) e^{\left(\Psi\left(n_{m}\right)-n_{\gamma}^{2}\right)}$
FCT $=\quad \frac{1}{\tau} n^{\tau}(\sqrt{2} \Lambda-\eta) e^{\left(\Psi(n)-\Lambda^{2}\right)}$
WQT $=\quad \frac{1}{\tilde{a} T}\left(\frac{\tilde{a} T}{E_{j}}\right)^{\tau}\left(\frac{1}{2}\right)^{\tau / 2} \frac{1}{\Gamma(\tau)}$

CONSTT $=$

$$
\frac{c_{\gamma} \gamma_{\gamma}}{\left(b^{2}+\gamma_{\gamma}^{2}\right)^{1-\tau}}
$$

hixin fint int an

APPENDIX H - COMPUTER PROGRAM

```
EXTERNAL FCT
COMMON TAU,CAPP1,PPSI
REAL LAMBDA
REAL LAMBD
REAL K:M
DIMENSION WQ(4), CCC(4), FGAHMA(4)
DIMENSION WQT ( 4 ), WQTT (4), CONSTT (4)
DIMENSION D \((4), G(4), R(4), C A P P(4), E T A(4)\)
DIMENSION EOO (12), COUNT (12), BIN(200)
```

READ IN THE CONSTANTS WHICH WILL FIT THE ENERGY LOSS
DISTRIBUTION TO A SU:H OF FOUR GAUSSIANS.
DATA $D(1), D(2), D(3), D(4) / 0.174,0.058,0.015,0.007 /, G(1)$ $1, G(2), G(3), G(4) / 1.8,2.0,3.0,5.0 /, R(1), R(2), R(3), R(4) /$

THE NEXT THREE PARAMETERS GIVE THE STARTING VALUE FOR THE ENERGY LOSS DISTRIBUTIUN (QS), THE WIOTH OF THE BINS FOR THE FINAL DISIRIBTRIBUTIDN (DELQS:.

QS $=1.7$
$D E L Q=.05$
$D E L Q S=0.100001$
"COUNTM" IS A NORMALIZJNG FACTOR FOR THE INITIAL ENERGY
DISTRIBUTION
COUNTM $=795$.
$L=1$
READ IN THE TARGET PARAMETERS AND DENSITY CORRECTION
CONSTANTS
READ $(5,21) \quad(E O O(J), \operatorname{COUNT}(J), J=1,12)$
READ $(5,20), Z, A_{2}$, X1, K, M, C
EO=INCIDENT ELECTRON ENERGY

- $\quad Z=A T O M I C$ NUMBER OF TARGET
$A=A T O M I C$ WEIGHT OF TARGET
$T=T H I C K N E S S$ OF TARGET IN GM/CM2
XI,K, M, C ARE THE STERNHEIMER DENSITY CORRECTION CONSTANTS.
20 FORMAT (3 FIO.5, 4F7.4)
21 FORMAT (6F10.5)
ZERO ALL THE BINS
600 DO $600 \mathrm{~N}=1,200$
6 BIN $(N)=0.0$
INITIATE INTRODUCTION OF FIRST ENERGY BIN FOR THE INITIAL DISTRIBUTION

$$
\begin{aligned}
& D O 700 ~ J=1.12 \\
& E O=E O O(J) \\
& N=1
\end{aligned}
$$

WRITE $S, 25$)EO, Z, A, T, XI, K, M, C
25 FORMAT : TARGET PARAMETERS AND DENSITY CORRECTION
 $13 X, T=F 9.5,1, X 1=F 5.2,3 X, \quad K=F G .3,3 X, \quad M=F 8.4 ;$ $13 x ; C=(F 8.4, / / 1$
BSQUAR=BSQ IS EQUAL TO THE SQUARE OF THE ELECTRONS SPEED DIVIDED BY THE SQUARE OF THE SPEED OF L.IGHT. $\mathrm{BSQ}=1 \cdot 0-0.25 / E O O(J) * * 2$
ALPH=ALPHA IS THE BASIC CROSS SECTION CONSTANT IN UNITS OF $\mathrm{HEV} / G M / C M$ SQUARED. $A L P H A=(0.154 * Z) /(B S Q * A)$

FUNC $(Z)=$ IS THE CORRECTION CONSTANT TAKING INTO ACCOUNT COMPLETE SCREENING IN RADIATION LOSS. V= FUNC (Z)
$V=(4.13 .1 \%(A L O G(183.12 \div *(1 . / 3)))+.1 . / 9$.

```
        \(X X=X\) IS THE VARIABLE USED FOR EVALUATION OF DENS ITY
        CORRECTION.
        \(X=A L O G 10(E O O(J) / .511)\)
    \(A R=A R A D(Z, A, V)\)
    TAU IS THE TARGET THICKNESS IN RADIATION LENGTH TIMES LNZ
    \(T A U=T 2 * A R\)
        RION IS THE BLOCH FORMULA FOR AVERAGE IONIZATION POTENT.
        RION \(=13.5 E-6 \% \mathrm{Z}\).
    THE NEXT SECTION SELECTS THE CORRECT STERNHEIMER CJR-
        RECTION CGNSTANT FOR THE TARGET BEING USED.. DELTA IS THE
        STERNHEIMER CORRECTION TERM.
        IF \(\{X=L T-X 1)\) GO TO 40
DELTA2 \(=4.605 * X+C\)
        DELTA = DELTA2
        GO TO 50
    40 DELTA1 \(=4 \cdot 606 * X+C+K *(X 1-X) * * M\)
    DELTA \(=\) DELTAI
    50 WRITE \((6,60)\) DELTA
    60 FORMAT: DELTA=:F12.6)
        WRITE \((6,10)\) BSQ, ALPHA,V,AR,TAU,RION, X
    10 FORMAT (/1, BSQ=:F12.9.1, \(A L P H A=F 12.9,1, \quad V=1 F 12.9 .1\)
```



```
        BBARK \(=\) BARK (ALPHA,EO,BSQ,RIDN,DELTA)
        WRITE \((6,70)\) BBARK
    70 FURMAT(: AVERAGE TOTAL ENERGY LOSS = F12.7.//)
    QBAR IS THE AVERAGE ENERGY LOSS IN THE TARGET
        QBAR \(=T * B B A R K\)
        \(B=B B(Z, A L P H A, T, Q B A R)\)
    WRITE (G,100)OBAR, B
100 FORMAT: \(Q B A R=F F 12.7, B=1 F 12.7,1 / 1\)
    "Q" \(Q=\) IS THE ENERCY LOSS OF ELECTRONS IN MEV.
220 LAMBDA \(=\angle A M B D(Q, A L P H A, T, E O, B B A R K)\)
    \(A W Q=0.0\)
    \(00105 \quad I=1,4\)
    \(D O=0(I)\)
\(G G=G(I)\)
\(R O=R(I)\)
    CALL CAPLAM(P, LAHBDA,RR,GG,B,CCAPP)
    CAPP (I)=CCAPP
    CAPPI = CAPP(I)
THIS NEXT SECTION DOES THE INTEGRATION OF THE FUNCTION F(ETA) \({ }^{\text {C }}\) CC=ETAH=ETAMAX IS THE UPPER LIMIT OF INTEGRATION. "NN" IS A FACIOR WHICH DIVIDES THE FINAL DISTRIBUTION INTO NN PARTS IN ORDER TO GET HORE ITERATIONS FOR THE FUNCTION BEING INTEGRATED. CCC (I) =ETAM \(Q, B, G G, A L P H A, T)\)
\(\mathrm{CC}=\mathrm{CCC}(\mathrm{I})\)
ET \(A M A X=C C\)
SUM \(=0.0\)
\(X_{L}=0.0\)
\(N \mathrm{~N}=10\).
\(X U=E T A M A X / N N\)
DEL TA=XU
QGIO IS A TEN POINT GAUSSIAN QUADRATURE INTEGRATIOV
ROUTINE FOUND IN THE NPS LIBRARY OF ROUTINES.
310 CALL QG1O(XL, XU,FCT,Y)
SUM \(=\) SUM \(+Y\)
\(X L=X U\)
\(X U=X U+D E L T A\)
IF (XU.GT. ETAMAX) GO TO 30
```

30 PSI=PSII (CAPPI,CC)
FGAMMA (I) =FGAMA(TAU,CC,CAPPI,PSI)
WQT (I) = WQWQ (ALPHA; T:EO, TAU)
CONSTT $(I)=$ CONST (DD,GG, B, TAU)
WQ(I) $=W Q T(I) * C O N S T T(I) *(F G A M M A(I)-S U M)$
AWQ IS THE VALUE FOR W(Q)DQ ASSUMING A MONOENERGETIC SOURCE CF ELECTRONS, AND THE BINS REPRESENT WIQIDQ FOR THE UNFOLDED THEORY.
$A W Q=W Q(1)+A W Q$
105 CONTINUE
$\operatorname{BIN}(N)=B I N(N)+A W Q *(\operatorname{COUNT}(J) / C O U N T M)$
WRITE $(6,650)$ Q
650 FORMAT(${ }^{2} \mathrm{Q}=\mathrm{F} 6.3$)
WRITE $(6,610)$ (N,BIN\{N))
610 FORHAT (: BIN: $: I 3: 1)=0, F 12.9)$
$N=N+1$
$Q=Q+D E L Q$
IF (5.5-Q) $500,220,220$
$500 L=L+D E L Q S / D E L Q$
700 CONTINUE
STOP
ENO

REAL FUNCTION ARAD (Z, A, Y)
ARAD=AR IS THE INVERSE RADIATION LENGTH TIMES THE LN 2. UNITS IN (GM/CM) TO THE MINUS ONE.
$X=1.38 \mathrm{E}-3 \div 2 \div 2$
$W=X \div Y$
$A R A D=W / A$
RETURN
END

REAL FUNCTION BARK (ALPHA,EO,BSQ,RION:DELTA)
BBARK = BARK IS THE AVERAGE TUTAL ENERGY LOSS
$A=A L O G((.511 * E O * B S Q) /(2.0 *(1.0-B S Q) * R I O N * * 2))$
$B=A+9.0 / 8 \cdot 0-B S Q$
$C=B-D E L T A$
BARK = ALPHA $\%$
RETURN
END

REAL FUNCTION LAMBD(Q,ALPHA,T,EO,BBARK)
LAMBD IS THE LANDAU LAMBDA AS CORRECTED BY STERNHEIMER. $A=Q /(A L P H A \div T)$
$B=A-B B A R K / A L P H A$
$C=B+A L O G(E O /(A L P H A * T))$
LAMBD = C-0.685
RETURN
END

REAL FUNCTION BB (Z,ALPHA,T, QBAR)
$B=B B$ IS THE CORRECTION CONSTANT FOR SECOND ORDER TERM IN RESONANCE PART OF THE IDIIIZATION LOSS.
$A=Z * \sim(2.0 / 3.0)$
$B=A /(A L P H A * T)$
$\mathrm{C}=\mathrm{SQRT}(20.0 E-6 * Q B A R)$
$B B=B \div C$
RETURN
END

4

14

```
        SUBROUTINE CAPLAM(P,Y,R,G,B,CCAPP)
CAPLAM IS THE VARIABLE IN THE LANDAU FUNCTION
P=Y-R 
    RETURN
    END
    REAL FUNCTION ETAM(Q,B,G,ALPHA,T)
ETA MAX IS THE UPPER LIMIT OF INTEGRATION VARIABLE WHICH
IS THAT PORTION OF Q LOST BY RADIATION.
    A=SQRT(2.0)
    Y=SQRT{B**2+G**2}
    C=A/Y
    ETAM=C*Q/(AL.PHA*T)
    RETURN
    END
    REAL FUNCTION FCT(ETA)
THE FUNCTION F(ETA) IS THE FUNCTION TO BE INTEGRATED FROM
O TO SOME VALUE ETA(MAX).
    COMMON TAU,CAPP1,PPSI
    PPSI=PSII(CAPPI,ETA)
    A=1.0/TAU
    B=A*{ETA**TAU)
    C=(SQRT(2.0) %CAPP1)-ETA
    D=PPSI-(CAPP1*2)
    E=EXP(D)
    GO TO 20
10 E=0.0
20 FCT=B*C*E
    RETURN
    END
    REAL FUNCTION FGAMA(TAU:ETAM,CAPP1,PSI)
    A=1.0/TAU
    B=A*(ETAM**TAU)
    C=EXP(PSI-CAPPI**2)
    FGAMA=B*C
    RETURN
    END
    REAL FUNCTION W'WWQ(ALPHA,T,EO,TAU)
THIS IS A CONSTANTS AND CONSISTS: OF THE FIRST PART,
BEFORE THE SUM, IN THE EQUATION FOR WIQ).
    A=1. ( (ALPHA*T)
    B=((ALPHA*T)/EO)**TAU
    C=A\divB
    D=C*(1.12.)**(TAU/2.)
    E=1./GAMMA(TAU)
    WQWQ=D*E
    RETURN
    END
    REAL FUNCTION PSII(CAPP1,ETA)
    A=SQRT (2.0) %CAPPI*ETA
    B=(ETA***2)/2.0
    PSII=A-B
    RETURN
    END
REAL FUNCTION CONST(D,G,B,TAU)
```

$$
\begin{aligned}
& A=D * G \\
& C=(B * * 2+G * * 2) * *(1.0-T A U) \\
& C O N S T=A /(S Q R T(C 1) \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

.

1. Landau, L., Journal of Physics, USSR, vol. 8, p. 201, 1944.
2. Blunck, 0., and S. Leisegang, Zeitschrift fur Physik, vol. 128, p. $500,1950$.
3. Blunck, 0., and K. Westphal, Zeitschrift fur Physik, vol. 130, p. 641, 1951.
4. Bumiller, F.A., F.R. Buskirk, J.N. Dyer, and R.D. Miller, Zeitschrift fur Physik, vol. 223, p. 415, 1959.
5. Miller, R.D., Energy Loss of High Energy Electrons in Aluminum, Master's Thesis, Naval Postgraduate School, 1968.
6. Goodwin, J.C., Energy Loss of High Energy Electrons in Aluminum
and Copper, Master's Thesis, Naval Postgraduate Schoot, 1968.
7. DeLeuil, W.R., and J.B. Raynis, Energy Loss of High Energy Electrons in Aluminum, Copper, and Lead, Master's Thesis, Naval Postgraduate School, 1969.
8. Mosbrooker, M.L., and D.L. Sandquist, Energy Loss of High Energy Electrons in Tin, Lead, and Gadolinium, Vaster's Thesis, Naval Postgraduate School, 1970.
9. Barry, W.F., and P.E. Oppedah1, Energy Loss of High Energy Electrons in Various Metals: Comparison of Theory and Experiment, Master's Thesis, Naval Postgraduate Schoot, 1971.
10. Whoeler, K., Personal Communication.
11. Sternheimer, R.M., Physical Review, vol. 88, p. 851, 1952.
12. Bethe, H., and W. Heitler, Proc. Royal Society, London, Series A, vol. 146, p. 83, 1934.
13. Segre, E., Experimental Nuclear Physics, vol. I, p. 257, Wiley, 1953.
14. Hanson, A.O., E.L. Goldwasser, and F.E. Mills, Physics Review, vol. 86, p. 617, 1952.
15. Rossi, B.B., High-Energy Physics, New York, Prentice Hall, p. 14-60, 1952 .

No. Copies

1. Defense Documentation Center 2 Cameron Station Alexandria, Virginia 22314
2. Library, Code 0212 2
Naval Postgraduate School Monterey, California 93940
3. Professor J. N. Dyer, Code 61 Dy 5 Department of Physics Naval Postgraduate School Monterey, California 93940
4. ENS Joe Christopher Midgett 1 4390 Lorcom Lane Arlington, Virginia 22207

Naval Postgraduate School

Unclassified

Monterey, California 93940

```
3 REPORT TITLE
Calculation of Electron Energy Losses in Various Metals
```

Master's Thesis (June 1972)
authoris) (First name, midelo inilial, lasinamo)
Joe Christopher Midgett

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY Naval Postgraduate School Monterey, California 93940

A reformulation of the Blunck and Westphal theory of electron energy loss in metals was performed for the metals beryllium, aluminum, copper, tin, gadolinium, and lead. Comparison with previous theoretical calculations shows good agreement for the most probable energy loss and for the full widths at half maximum of the electron energy loss distributions. The computer program designed for these calculations is an improvement over previous programs in both computation time and simplicity.

A semi-empirical formula for the most probable energy loss was calculated. This formula agrees, with in a few percent, with the most probable energy loss calculated according to the Blunck and Westphal theory except in the case of thick ($>3 \mathrm{gm} / \mathrm{cm}^{2}$) absorbers of heavy elements. The full width at half maximum for the energy loss distribution is presented in graphical form as functions of target thickness and atomic number. Both the most probable energy loss and the half widths were found to be only slightly dependent upon the initial electron energy.

14	KEY WORDS	LINKA		LINK		LINKC	
		ROLE	WT	ROLE	W^{T}	FOLE	NT

Blunck and Westphal Electron Energy Loss Theory Energy Loss in Various Metals

Most Probable Energy Loss, Electron Energy Loss Distribution

Most Probable Energy Loss, Semi-Empirical Formula

Full Width at Half Maximum, Electron Energy Loss Distribution

$\$ 35221$

Thesis
 M5785 Midgett

 various metals.

Thesis
$\$ 35221$
M5785 Midgett
c. 1 Calculation of electron energy losses in various metals.

32768001883226
DUDLEY KNOX LIBRARY

[^0]: 1antity

